THE CHINESE UNIVERSITY OF HONG KONG DEPARTMENT OF MATHEMATICS

MMAT5210 Discrete Mathematics 2017-2018 Suggested Solution to Assignment 1

1. Define a relation \sim on \mathbb{R}^2 such that $(x_1, y_1) \sim (x_2, y_2)$ if and only if $x_1^2 + y_1^2 = x_2^2 + y_2^2$.

- (a) Show that the relation \sim is an equivalence relation.
- (b) What are the elements of the equivalence class $[(3, 4)]$?
- (c) Describe the elements of \mathbb{R}^2/\sim .

Ans:

- (a) Obviously, above relation satisfies the reflexive, symmetric and transitive properties. Hence, it is an equivalence relation.
- (b) By definition, an element (x, y) in the class $[(3, 4)]$ satisfies equation $x^2 + y^2 = 25$. Therefore, the point which lies in the circle $x^2 + y^2 = 25$ is element of the equivalence class [(3,4)].
- (c) By definition, any two elements lie in the same class if and only if they lie in the same circle in \mathbb{R}^2 . Therefore, $\mathbb{R}^2/\sim=[0,+\infty)$.
- 2. Let $\mathbb{R}[x]$ be the set of all polynomials with real coefficients.

Define a relation \sim on $\mathbb{R}[x]$ such that $P(x) \sim Q(x)$ if and only if $P(x) - Q(x)$ is divisible by $x^2 + x + 1.$

- (a) Show that the relation \sim is an equivalence relation.
- (b) Describe the elements of $\mathbb{R}[x]/\sim$.

Ans:

- (a) Obviously, above relation satisfies the reflexive and symmetric properties. To see the transitive property, note that if $P(x) - Q(x)$ and $Q(X) - R(x)$ are divisible by $x^2 + x + 1$, then $P(x) - R(x)$ is also divisible by $x^2 + x + 1$.
- (b) Since every $P(x)$ can be written as $P(x) = K(x)(x^2 + x + 1) + ax + b$ and $ax + b$ is not divisible by $x^2 + x + 1$, $\mathbb{R}[x]/\sim = \{ [ax + b] | a, b \in \mathbb{R} \}.$
- 3. Construct a concrete bijective function from \mathbb{Z}^+ to \mathbb{Z} .

Ans: Define function

$$
f(n) = \begin{cases} -\frac{n+1}{2} & \text{if } n \text{ is odd} \\ \frac{n}{2} & \text{if } n \text{ is even} \end{cases}
$$

To see that f is injective, if there are n_1 and n_2 such that $f(n_1) = f(n_2)$. By definition, both of n_1 and n_2 are even if $f(n_1)$ is positive and both of n_1 and n_2 are odd if $f(n_1)$ is negative. According to the definition, we know that $n_1 = n_2$.

Obviously, f is surjective.

4. Show that $\log(n^2 + 1)$ is $O(\log n)$.

Ans: In that $2 \log n = \log n^2 \le \log(n^2 + 1) \le \log n^3 = 3 \log n$, we have $\log(n^2 + 1) = O(\log n)$.

5. (a) Show that $n \log n$ is $O(\log n!)$.

Ans: In that $n! = n \times \cdots \times 1 \geq \left(\frac{n}{2}\right)^{\frac{n}{2}}$, we have

$$
\log n! \ge \frac{n}{2} (\log n - \log 2).
$$

Therefore, $10 \log n! \ge n \log n$ for $n \ge 2$.

(b) Is it true that $n \log n$ is $\Theta(\log n!)$?

Ans: Yes, in that $n! \leq n^n$, so $\log n! \leq n \log n$.

6. Let $\alpha > \beta > 1$. Show that β^n is $O(\alpha^n)$, but α^n is not $O(\beta^n)$.

Ans: By assumption, we know that $0 < \frac{\beta}{\alpha} < 1$ and hence $\lim_{n \to \infty} \frac{\beta^n}{\alpha^n} = 0$. Therefore β^n is $O(\alpha^n)$ and α^n is not $O(\beta^n)$.

- 7. Let k be a positive integer.
	- (a) Show that $1^k + 2^k + \cdots + n^k$ is $O(n^{k+1})$.

Ans: It is worth noting that $1^k + 2^k + \cdots + n^k \leq n^k + n^k + \cdots + n^k = n^{k+1}$, therefore, $1^k + 2^k + \cdots + n^k$ is $O(n^{k+1})$.

(b) Is it true that $1^k + 2^k + \cdots + n^k$ is $\Theta(n^{k+1})$?

Ans: Yes, this is true. By definition of the Riemann integral we have:

$$
\lim_{n \to \infty} \frac{1^k + 2^k + \dots + n^k}{n^{k+1}} = \lim_{n \to \infty} \frac{1}{n} \sum_{i=1}^n (\frac{i}{n})^k = \int_0^1 x^k dx = \frac{1}{k+1}
$$

.

Therefore, n^{k+1} is $O(1^k + 2^k + \cdots + n^k)$.

8. (a) Show that for any positive integer $n \geq 2$,

$$
\sum_{j=2}^{n} \frac{1}{j} < \int_{1}^{n} \frac{1}{x} \, dx.
$$

Ans: In that $\frac{1}{x}$ is strictly decreasing, we have

$$
\int_{1}^{n} \frac{1}{x} dx = \sum_{i=2}^{n} \int_{i-1}^{i} \frac{1}{x} dx > \sum_{i=2}^{n} \int_{i-1}^{i} \frac{1}{i} dx = \sum_{i=2}^{n} \frac{1}{i}.
$$

(b) Let H_n be the *n*-th harmonic number

$$
H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}.
$$

By using the result in (a), show that H_n is $O(log(n))$

Ans: $H_n = 1 + \sum_{j=2}^n \frac{1}{j} < 1 + \int_1^n \frac{1}{x} dx = 1 + \log n \le C \log n$. Hence, H_n is $O(\log(n))$.